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Abstract. The exchange of coastal waters between the Mississippi Sound (MSS), Mobile Bay,
and Mississippi Bight is an important pathway for oil and pollutants into coastal ecosystems.
This study investigated an event of strong and persistent inflow of shelf waters into MSS and
Mobile Bay during October 2015 by combining in situ measurements, satellite ocean color data,
and ocean model predictions. Navy Coastal Ocean Model predicted high-salinity shelf waters
continuously flowing into the estuarine system and forecasted low-salinity waters trapped inside
the estuaries which did not flush out until the passage of tropical cyclone Patricia’s remnants in
late October. The October 2015 chlorophyll-a anomaly was significantly low inside and outside
the MSS for the 2003 to 2015 time series. Similar low-chlorophyll-a anomalies were only seen
in 2003. The October 2015 mean in situ salinities were up to 8 psu higher than mean from
2007 to 2015, and some estuarine stations showed persistent salinities above 30 psu for almost
a month in agreement with model predictions. October 2015 was associated with low fall sea-
sonal discharge, typical of fall season, and wind which was persistently out of the east to south-
east [45–180]°. These persistent wind conditions were linked to the observed anomalous
conditions. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.11.032410]
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1 Introduction

The CONsortium for oil spill exposure pathways in COastal River Dominated Ecosystems
(CONCORDE) studies the ecosystem dynamics and characterization of the complex four-
dimensional physical, geochemical, and bio-optical fields in the Mississippi Bight influenced
by pulsed river discharge. A key question addressed by CONCORDE is: Despite the fluvial
input into the Mississippi Sound (MSS) and Mobile Bay [Fig. 1(a)], how can oil and other pol-
lutants enter the Sound and Bay from the shelf and reach the coastal mainland, as it did during
the Deepwater Horizon (DWH)/Macondo Well oil spill?1 This study focuses on a particular set
of meteorological events that resulted in shelf waters being forced into the MSS, and so provides
a scenario where an offshore oil spill or other toxic events, could affect the MSS and coastal
mainland.
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The first CONCORDE cruise occurred on October 27 to November 7, 2015, shortly after the
passage of tropical cyclone Patricia’s remnants over the study area. Patricia had dissipated over
the Sierra Madre mountains in Mexico after its landfall on the coast of southwestern Mexico as
a category four hurricane, but interacted with an upper-level baroclinic trough, and reformed as a
baroclinic cyclone.2 The cyclone moved north-northeast from south Texas to southeast Louisiana
from 12:00 UTC October 25 to 00:00 UTC October 27, 2015, then turned north paralleling the
Louisiana/Mississippi state line until 00:00 UTC October 28, 2015 [Fig. 1(b)]. After it reached
northwest Mississippi, the system moved east over north Alabama. The unusual path created
wind patterns favorable to storm surge water elevations of 0.6 to 1.2 m in coastal Louisiana,
Mississippi, and Alabama. By 00:00 UTC October 30, 2015, a cold front reached the study
region with widespread rainfall and shifted the winds to an offshore component, conducive
to flushing estuaries such as Mobile Bay.

The Navy Coastal Ocean Model (NCOM) circulation predictions and ocean color imagery
from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua (MODIS-Aqua)
satellite were analyzed during the CONCORDE precruise preparation in October 2015 and

Fig. 1 (a) Study area map with MDMR/USGS stations (black labels) and NOAA/NDBC stations
and buoys (red labels) in the Mississippi Bight. Contour lines represent the isobaths. The red
dotted lines represent the transects used to extract the chlorophyll-a anomalies from MODIS-
Aqua. Blue lines on land represent the rivers. (b) The track of Patricia’s remnants over the southern
United States. Black box denotes the study area.
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identified strong and persistent easterly-southeasterly surface currents transporting offshore
waters onto the shelf from October 18 to 26, 2015. During the same period, a prolonged inflow
of saline offshore waters into the MSS and Mobile Bay occurred through the barrier island
passes. This event lasted until the passage of Patricia’s remnants and subsequent frontal systems
over the region and was atypical in its extended duration of more than 7 days as well as in
intensity. This event occurred right before the CONCORDE cruise. Such an influx of offshore
waters into coastal areas could be crucial in the case of an oil spill or a toxic phytoplankton
bloom event allowing toxins to reach the crucial coastal habitats.

The coastal waters of the northern Gulf of Mexico (nGoM) are characterized by rich and
diverse ecosystems such as salt marshes and wetlands which are extremely valuable for nursery
habitats, oyster reefs, and fisheries in general.3–5 Toxic events such as oil spill and harmful algal
bloom (HAB) events are detrimental for coastal ecosystems and fisheries of the Louisiana (LA),
Mississippi (MS), and Alabama (AL) coast. In the aftermath of the DWH oil spill event, oil and
dispersants reached the coastline in the nGoM and resulted in environmental damage in the Gulf
States.6–9 Advection of Karenia brevis HABs from the Florida Panhandle have episodically
reached the MSS,10,11 and most recently a Karenia brevis bloom reached the MSS during
the fall of 2015 causing the closure of oyster beds for several weeks and alerting the coastal
managers of the potential implications of these episodic events. Although the MSS and Mobile
Bay coastal habitats are separated from the open shelf by the barrier islands, they are not immune
to advection of pollutants from offshore waters. Coastal and estuarine ecosystems can be
impacted if offshore waters from the shelf are transported into the estuarine system via the barrier
island inlets.

Salinity levels within coastal areas of Mississippi and Alabama are generally high (>32 psu,
practical salinity units) in open water areas located south of the barrier islands and low (<20 psu)
in near-coastal areas inside the MSS and Mobile Bay estuaries due to freshwater sources flowing
into the systems.12–16 Total mean discharge from rivers into the Mobile Bay and the MSS is low
in the fall season, so the resulting freshwater plumes onto the inner-shelf region of nGoM would
be minimal.17 Although estuarine waters can impact the coastal water,18 the shelf is generally
dominated by high-salinity offshore waters and westward currents during the fall months.19,20

The connection and interaction between the estuaries and shelf waters in the nGoM occur
through the multiple barrier island inlets ∼15 km south of the mainland. Surface salinity records
from stations near the barrier islands indicate that the inflow and intrusion of high-salinity Gulf
of Mexico (GoM) waters into the MSS and Mobile Bay, i.e., north of the barrier islands, all along
the water column occur episodically.12 In general, these saltwater inflow events are observed to
be short-lived, i.e., on the order of hours and usually less than a day. However, the potential
impact of oil spills, HABs, or similar events on coastal and estuarine ecosystems could be inten-
sified if offshore shelf waters were persistently transported into these systems during such toxic
events on the shelf.

There have been previous studies focusing on the oceanography, hydrology, and ecology of
the Mississippi Bight and Sound.15–17,21–23 The MSS is primarily a vertically well-mixed semi-
enclosed estuary, also showing characteristics of a partially well-mixed estuary and locally
a stratified estuary.12 August–October is a low-inflow/high-salinity period and the persistent
southerly and southeasterly winds and low discharge cause strong vertical stratification in the
Mobile Bay and MSS.17 Kjerfve24 showed that 1-week period meteorological events control
water exchanges between the estuary and GoM. Wind forcing and freshwater discharge are
important factors impacting the flow structure on the shelf and the transport of plume and non-
plume surface waters on the shelf.25,26 Dietrich et al.27 studied surface trajectories of oil transport
along the nGoM coastline with a coupled numerical model system of Simulating WAves
Nearshore (SWAN) and ADvanced CIRCulation (ADCIRC) Model and showed that a hurricane
landfall during an oil spill would move oil from the shelf into the MSS and toward the coastline.
Zaron et al.28 showed using an ocean model that cyclones dramatically altered oil spill transport
pushing oil into the Western MSS in Summer 2010 following DWH oil spill and showed that the
estuarine intrusion and shoreline impacts from DWH were associated with edge influences of
Hurricane Alex in late June 2010 followed by a baroclinic cyclone 1 week later. Arnone et al.29

used a combination of satellite products and physical models to show that a significant amount of
offshore surface waters may exchange across the shelf moving onshore from the shelf break to
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the inner-shelf. Kim and Park30 studied the Mobile Bay system with a hydrodynamic modeling
system and showed that along-shelf east wind events during weak-stratification conditions due to
low discharge induces onshore Ekman transport and causes onshore transport of saline GoM
waters. More recently, Webb and Marr31 showed that flushing in Mobile Bay may be inhibited
due to increases in easterly wind speed and northerly flows along the shorelines.

Many of these studies focused on the exchange between Mobile Bay and the shelf; however,
studies of exchange between the MSS and the Bight have been limited. Thus the interaction and
connection between the less saline, colder MSS and Mobile Bay waters, and more saline, warmer
shelf waters are not fully understood, especially during inflow events when GoM waters intrude
into the estuarine systems. In this study, the goal is to combine ocean model forecasting products
and in situ coastal ocean measurements with ocean color satellite imagery to understand the
mechanisms that bring offshore saltier waters into the MSS and Mobile Bay for extended peri-
ods. These mechanisms including coastal ocean circulation, river discharge, and meteorological
forcing will be examined to improve the understanding of inflow and intrusion of shelf waters
into the estuaries which could potentially bring offshore sources of oil and toxins into coastal
systems.

2 Data and Methods

2.1 Study Area

The study area is within the Mississippi Bight located in the nGoM [Fig. 1(a)]. The Mississippi
Bight coastal plain is broad and of low relief which allows large estuarine systems to intrude
inland.15,16 This complex coastal ecosystem is defined by a series of barrier islands that separate
the estuarine system from the Gulf of Mexico. The barrier islands are separated by inlets and
protect the shallow lagoons of Mobile Bay, MSS, Chandeleur Sound, and Breton Sound.32 Our
study focused on the MSS and Mobile Bay which have water depths less than 6 m and a mainly
diurnal tide of less than 0.6 m. The MSS is a shallow (average 3-m deep) elongated estuarine
basin that connects to the GoM through a series of passes between five barrier islands, i.e.,
Cat, Ship, Horn, Petit Bois, and Dauphin islands [Fig. 4].12,24,33 Although the geographical boun-
daries of the MSS are often a source of debate, the eastern and western boundaries are nominally
Mobile Bay and Cat Island.32 Most of the fresh water fluxes into the MSS are due to the
Pascagoula and Pearl rivers, however, other smaller rivers (i.e., Biloxi, Tchoutacabouffa,
Jourdan, and Wolf), small bayous, and even Mobile Bay and the Mississippi River contribute
to the fresh water inputs into the Sound.12,17 The Mobile River may contribute fresh water to the
eastern side of the Sound, while the western MSS may receive fresh water from the Mississippi
River especially when the Bonnet Carré spillway is open12,24,34 and also from other rivers
through Lake Borgne and Pontchartrain. Based on salinity, Eleuterius12 defined the Sound
as vertically well-mixed from July to December, with vertical homogeneity reaching a peak
in October which is the period of interest. Adjacent to the MSS is Mobile Bay, a wide, shallow,
and highly stratified estuary. The main freshwater sources for Mobile Bay are the Mobile and
Tensaw Rivers.14 A representative monthly average salinity in Mobile Bay was recorded as 13
psu during August–October 1968 and 4 psu during February–April 1969. The monthly average
representative salinity in the MSS is generally higher with an average salinity of 16 psu in
summer–fall months of 1980 and 13 psu in winter–spring months of 1984 with highest average
salinities in the central part of the MSS and lower average salinities toward the western and
eastern parts of the MSS.17

2.2 Ocean Circulation Model

In this study, the results of a regional application of NCOM for the Gulf of Mexico at 1-km
resolution were used. A daily assimilation cycle was used at the beginning of each daily sim-
ulation followed by 72-h forecasts. Three-hour model outputs of temperature, salinity, velocities,
and surface elevation were produced by NCOM, and the solution only from the first 24 h of each
72-h forecast period was used in the analysis of this study. The model results for the entire GoM
was the subset for the Mississippi Bight.
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NCOM is a Boussinesq model that solves the hydrostatic primitive equations.35–37 The spatial
resolution of the model is 1 km in the horizontal, and the water column is resolved by 50 levels in
the vertical. Locations with 250 m and shallower depths were resolved by 35 sigma levels, and
additional 15 fixed z-levels were used below 250-m depth at deeper locations. The model incor-
porates a realistic bathymetry derived from the Naval Research Laboratory 2-min database.
Atmospheric forcing is provided hourly from a 17-km resolution operational application of
Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®).38–40 Boundary condi-
tions, i.e., temperature, salinity, velocities, and elevation, are provided from the global opera-
tional HYbrid Coordinate Ocean Model (HYCOM). In addition, tidal boundary conditions are
gathered from the global Oregon State University Tidal Inversion Software solution.41,42 In this
specific version of NCOM, monthly climatological river forcing was used for the major rivers
in the area, i.e., Mississippi, Pearl, Pascagoula, and Mobile Rivers. Model predictions were a
40-h moving average filtered to eliminate the tidal signal when comparing with the measure-
ment data.

2.3 Ocean Color Satellite Imagery

Satellite derived chlorophyll-a was obtained from the MODIS-Aqua satellite. Quality
controlled MODIS-Aqua Level-3 standard mapped image (SMI) chlorophyll-a monthly
means and climatology were downloaded from the NASA-Ocean Biology Processing
Group website) at 4-km spatial resolution.43 Level-3 chlorophyll-a is derived using a combi-
nation of the OC3 algorithm from O’Reilly et al.44 and the color index from Hu et al.45 NASA’s
l2-gen processing take care of calibration and atmospheric correction and level-2 flags are
applied which eliminates suspicious or erroneous pixels. For more information about
NASA’s ocean color data processing, calibration, and validation, refer to O’Reilly et al.46

and Werdell and Bailey.47

A 13-year monthly climatology for the month of October was developed by averaging all
chlorophyll-a data for October months of each year from 2003 to 2015. The MODIS-Aqua
October monthly mean chlorophyll-a anomaly fields over the Mississippi Bight for each
year between 2003 and 2015 were calculated by taking the difference between the October
chlorophyll-a monthly mean field of each year and the 13-year October monthly mean
climatology as

EQ-TARGET;temp:intralink-;e001;116;351ChlaAnomðyearÞ ¼ ChlaMeanðyearÞ − ChlaClim; (1)

where ChlaAnom is the October monthly mean chlorophyll-a anomaly of a given year, ChlaMean is
the October monthly mean chlorophyll-a of a given year, and ChlaClim is the October monthly
mean chlorophyll-a climatology (see Figs. 13 and 14 in the Appendix for more details). The
chlorophyll-a anomaly data were extracted along two latitudinal transects inside (30.27°N)
and outside (30.15°N) the MSS as shown in Fig. 1(a) (red lines). One-way analysis of variance
(ANOVA) and a pairwise multiple comparison test were used in MATLAB to determine whether
the monthly anomaly of October 2015 was significantly different from the other years (2003 to
2014).

2.4 In Situ Measurements

The Mississippi Department of Marine Resources (MDMR) provides data from real-time hydro-
logical monitoring stations operated in partnership with the U.S. Geological Survey (USGS) in
the MSS.48 The stations are maintained to USGS specifications49 with calibration uncertainties
not exceeding�0.2°C, for temperature, and the higher of�5 mS∕cm (roughly 0.01 psu) or�3%

for specific conductance at 25°C. Figure 1(a) shows the locations of the MDMR/USGS stations
(black labels). The instruments are mounted near the sea-floor and measure temperature, salinity,
and pressure (water level). The National Data Buoy Center (NDBC), a part of the National
Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS), both
operates coastal marine stations in the area, and serves data from other organizations that con-
tinuously monitor meteorological and oceanographic conditions in the coastal GoM. NDBC
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performs automated quality control on measurements before distribution.50 The locations of
NOAA/NDBC stations used in this study area are shown in Fig. 1(a) (red labels). Stations
in Alabama waters around the Mobile Bay estuary with continuous salinity records were
used, i.e., Dauphin Island, AL (DPHA), Perdido Pass, AL (PPTA), Middle Bay Light, AL
(MBLA), Bon Secour, AL (BSCA), and Cedar Point, AL (CRTA). Wind data from an offshore
buoy 44-nm southeast of Mobile Bay Main Pass near Orange Beach (OB), AL, at 28-m depth,
were also analyzed. Salinity data from The University of Southern Mississippi buoy (NDBC
Station 42067) and current data from the FOCAL (Fisheries Oceanography in Coastal
Alabama) mooring, both at the 20-m isobath on the inner-shelf, were also used. Table 1 provides
the coordinates, names, and measurements available from each station. River discharge data
were obtained from four USGS stations from the Alabama, Mobile, Pascagoula, and Pearl
Rivers. Note that the river discharge stations are not included in Fig. 1, but the coordinates
can be found in Table 1.

Table 1 List of station names, coordinates, and measurements used for salinity (S), temperature
(T), water level (WL), wind (W), currents (C), and river discharge (R).

Station ID, location Latitude (N) Longitude (W) Organization S T WL W C R

M1, Pascagoula River 30°22’04.0” 88°33’47.0” MDMR/USGS × × ×

M2, MS Sound, Round Island 30°18’29.0” 88°35’02.0” MDMR/USGS × × ×

M3, West Pascagoula River 30°22’57.7” 88°36’30.4” MDMR/USGS × × ×

M4, Graveline Bayou 30°21’46.4” 88°41’41.0” MDMR/USGS × × ×

M5, Biloxi Bay 30°23’18.0” 88°51’26.0” MDMR/USGS × × ×

M6, MS Sound, East Ship Island 30°15’16.0” 88°52’08.0” MDMR/USGS × × ×

M7, MS Sound, Center Sound 30°19’07.0” 88°58’20.0” MDMR/USGS × × ×

M8, Back Bay of Biloxi 30°24’56.0” 88°58’33.0” MDMR/USGS × × ×

M9, Merrill Shell Bank Light 30°14’17.0” 89°14’34.0” MDMR/USGS × × ×

M10, St. Joseph Island Light 30°11’27.0” 89°25’20.0” MDMR/USGS × × ×

M11, East Pearl River 30°11’41.0” 89°32’03.0” MDMR/USGS × × ×

M14, MS Sound, Grant Pass 30°07’22.0” 89°15’01.0” MDMR/USGS × × ×

DPHA, Dauphin Island, AL 30°15’05.0” 88°04’40.0” NOAA/NDBC × × ×

CRTA, Cedar Point, AL 30°18’30.0” 88°08’22.0” NOAA/NDBC × × ×

PPTA, Perdido Pass, AL 30°16’44.0” 87°33’21.0” NOAA/NDBC × × ×

BSCA, Bon Secour, AL 30°19’43.0” 87°49’46.0” NOAA/NDBC × × ×

MBLA, Mobile Bay, AL 30°26’15.0” 88°00’41.0” NOAA/NDBC × × ×

42067, USM Buoy 30°02’33.0” 88°38’50.0” USM/NDBC × ×

FOCAL Buoy 30°05’24.6” 88°12’41.6” FOCAL × × ×

42012, Orange Beach Buoy, AL 30°03’55.0” 87°33’19.0” NOAA/NDBC ×

DPIA, Dauphin Island, AL 30°15’05.0” 88°04’40.0” NOAA/NDBC ×

2428400, Alabama River 31°36’54.0” 87°33’02.0” USGS ×

2470629, Mobile River 31°00’56.0” 88°01’15.0” USGS ×

2479310, Pascagoula River 30°36’38.0” 88°38’29.0” USGS ×

2489500, Pearl River 30°47’35.0” 89°49’15.0” USGS ×
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3 Results and Discussion

In this study, we analyzed the available data from different sources (described in Sec. 2) together
to understand the dynamics of transport of shelf waters into the estuarine system. Figure 2 shows
a diagram of all available data and summarizes the methods used for each data set. The first step
was to analyze the model predictions of flow dynamics during the inflow and transport of saline
shelf waters into the estuarine system in October 2015 prior to the passage of the remnants of
tropical cyclone Patricia. We validated the model results near the Mobile Bay Main Pass with
in situ measurements. Then a 9-year time series (2007 to 2015) of in situ salinity measurements
was used to determine whether the October 2015 event was a recurrent event during the fall
season. Monthly anomalies of MODIS-Aqua chlorophyll-a imagery were used to understand
the system response to the inflow of high-salinity shelf waters into the Mobile Bay and the
MSS. Finally, in situ wind and river discharge measurements were used to understand the
mechanisms causing the inflow of shelf waters into the estuarine system.

While different sources of data are at different spatial and temporal resolutions as shown in
Fig. 2, they complement each other by covering the entire study area. In situ instruments provide
reliable oceanographic and meteorological measurements; however, they are spatially sparse and
limited, therefore, the kinematics and dynamics between stations are unknown. The ocean model
and satellite data allow us to fill these gaps, understand the spatial and temporal variabilities in
our study region, and analyze the flow through the inlets of the barrier island system.

3.1 Navy Coastal Ocean Model Salinity and Currents

NCOM model predictions for sea surface salinity (SSS) and surface currents covering the
Mississippi Bight and Sound were used to understand the dynamic processes and chronological
meteorological and oceanographic events that forced offshore saline waters toward the MSS
during October 2015. NCOM surface salinity in Fig. 3 shows the inflow of saline shelf waters
into the Mobile Bay and MSS through the multiple barrier island inlets from October 19 to 28,
2015. Due to strong easterly and southeasterly currents, low-salinity estuarine waters were
predicted to be trapped inside the Sound until the passage of Patricia’s remnants on October
27, 2015.

Velocity measurements (not shown here) at an inner-shelf mooring FOCAL station, located
∼20 km southwest of the Mobile Bay Main Pass [see Fig. 1(a) for location], showed that the
currents were directed onshore, mainly in the NW direction from October 18 until the instrument
was buried due to Patricia’s remnants on October 27, 2015. NCOM results in Fig. 3 show an
inflow of high-salinity shelf waters via the Horn Island Pass before October 19, 2015 [Fig. 3(a)].
The model results show that higher salinity shelf waters reached the southern coastline of almost

Data source

NCOM   
model data

Spatial resolution: 1-km  
Temporal resolution: 3-h

MODIS-Aqua 
satellite data

Spatial resolution: 4-km 

Temporal resolution: 24-h

In-situ 
measurements

Temporal resolution: 15,30,60-min

Data type

Currents

Salinity

Chlorophyll-a

Winds

River discharge

Water levels

Temperature

Data analysis

Analyze model predictions for shelf 
water inflow to the estuarine system

Validate model results with 

in-situ measurements

Analyze long-term (9-year) in-situ 
measurement time-series for 

recurring inflow events

Analyze satellite data to understand 
system response to inflow event

Analyze wind and discharge data to 
understand mechanisms and 

conditions causing the inflow event

Fig. 2 Available data sources with their spatial and temporal resolutions, data types used from
each source, and the data analysis flowchart.
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all barrier islands, entered the estuarine system mainly via the Mobile Bay Main Pass, mixed
with estuarine waters, and then flowed west into the MSS via Grant Pass (Pass aux Herons)
[Figs. 3(b)–3(e)]. Because of the wind reversal associated with Patricia’s remnants, estuarine
waters were expected to be flushed out of the MSS and Mobile Bay as predicted by the
model on October 28, 2015 [Fig. 3(f)]. Satellite imagery following passage of Patricia’s rem-
nants (not shown here) also showed high-chlorophyll-a concentrations due to strong mixing,
sediment resuspension, and increased biological activity in the freshwater plumes on the
inner-shelf.51

Hovmoeller diagrams of NCOM SSS (0 to 2 m) along three chosen transects [Fig. 4(a);
dashed lines] around the barrier island inlets are shown in Fig. 4. Figure 4(a) shows a
zoomed-in map of the MSS barrier islands and passes. The southern-most transect is outside
the Sound along 30.2°N and is aligned with Pelican, Petit Bois, and West Ship islands
[Fig. 4(b)]. The salinity along the eastern side of the transect (<88°40 0W) shows salinities
of inner-shelf waters above 32 psu, reaching and exceeding 34 psu. Lower salinity waters
were predicted by the model to flush out of the Mobile Bay between October 11 and
October 18, 2015, and later from October 27 to November 3, 2015, after the passage of
Patricia’s remnants and a subsequent cold front on October 30, 2015. The flushing of lower
salinity water from the Sound starting from October 27, 2015, was predicted to be stronger

Fig. 4 (a) Map of the MSS showing the major barrier islands and passes. NCOM predictions of
sea surface salinity in between October 11 and November 11, 2015, through transects, (b) outside
the Sound along 30.2°N(30°12’N), (c) along the passes at 30.24°N(30°14’24”N), and (d) inside
the Sound along 30.3°N(30°18’N). Transect locations are shown in (a) as dashed lines.

Fig. 3 NCOM predictions of SSS and surface currents in the study area on (a) October 18, 2015,
(b) October 20, 2015, (c) October 22, 2015, (d) October 24, 2015, (e) October 26, 2015, and
(f) October 28, 2015.
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from the inlets around the Petit Bois Island most likely via both the Horn and Petit Bois passes.
Lower salinity estuarine waters were predicted to continuously flush out of the Ship Island Pass
during the entire month of October, while the intensity of flushing decreased between October 18
and 27, 2015.

Figure 4(c) shows the NCOM SSS through a transect north of the Mississippi barrier islands
at 30.24°N crossing Dauphin Island and Fort Morgan, AL. This transect may be considered as
the transition in between estuarine waters and shelf waters because it shows the signature of both
lower salinity estuarine waters (<25 psu) and higher salinity shelf waters (>34 psu). The model
predicted strong northward transport of high-salinity waters through Mobile Bay Main Pass
starting from October 18, 2015, and the inflow associated with this transport seems to prevent
the flushing of Mobile Bay estuarine waters onto the shelf. The diagonal pattern of low-salinity
waters from October 18 to October 27, 2015, shown in Fig. 4(c), suggests that the blockage of
outflow at the Mobile Bay Main Pass and the strong easterly winds and currents caused the
estuarine waters to be transported west from Mobile Bay toward the MSS. Therefore, it is likely
that the low-salinity waters flushing out of the Horn Island and Petit Bois passes on October 27,
2015, could possibly be Mobile Bay estuarine waters transported westward during the 10-day
period leading to the Patricia’s remnants passage over the study area.

The last transect is inside the MSS and Mobile Bay at 30.3°N. Low-salinity (<30 psu)
estuarine waters dominated throughout the period as shown in Fig. 4(d). The model predicted
high-salinity shelf waters reaching this transect north of Mobile Bay Main Pass starting from
October 19, 2015, with increasing intensity toward October 27, 2015. The salinity through this
transect also showed an earlier high-salinity inflow via the Petit Bois Pass mixed with estuarine
waters. These relatively high-salinity waters (>30 psu) were observed to be transported west
between October 18 and October 27, 2015, possibly due to westward transport of Mobile
Bay estuarine waters.

3.2 In situ Measurements in the Mississippi Sound and Mobile Bay

Figure 5 shows 40-h moving average filtered wind measurements at the OB buoy [Fig. 1(a); OB],
water level, and salinity measurements (blue lines) at the Dauphin Island station [Fig. 1(a);
DPHA] compared to the model predictions (red lines) during October 2015. Figure 5(a) and
5(b) show that the variability and magnitude of the East–West(u) and North–South(v) compo-
nents of wind forcing from the COAMPS solution, used to force NCOM in October 2015,
compare well with the measurements on the shelf at the OB buoy station southeast of the
Mobile Bay Main Pass. The correlation coefficients between the u(E–W) and v(N–S) compo-
nents of COAMPS wind variation and the measurements in October 2015 were r ¼ 0.939 and
r ¼ 0.967, respectively. Such high correlations indicate that the model forcing captured the wind
variability on the shelf while the root mean squared error of modeled winds compared to the
measurements is 5 m∕s. Starting from October 16, 2015, the wind was predominantly south-
easterly and easterly until a strong wind reversal happened due to Patricia’s remnants on
October 27, 2015. The cross correlation of the model wind results with the measured winds
showed that the u-component (E–W) of the model winds has a lag time of 2 h in regard to
the field measurements, whereas the v-component (N–S) has no lag.

Figure 5(c) shows that the timing of model predictions for the water level peak and flushing
was close to the measurements, with the peak magnitude matching the observed at the Dauphin
Island station. The water surface elevation increased inside the MSS and Mobile Bay because of
the trapping of estuarine waters combined with the surge. The salinity prediction of the model for
October 2015 [Fig. 5(d)] was also in line with the measurements at Mobile Bay Main Pass
(DPHA) with a correlation coefficient of r ¼ 0.908 for the month of October. Measurements
showed that the salinity began to increase on October 18, 2015, and peaked at 33 psu during
Patricia’s influence on October 27, 2015. Salinity then decreased with Patricia’s wind shift fol-
lowed by several cold fronts to a value of 22 psu by early November 2015. The model salinity
predictions were closer to the measurements between October 1 and 17 after which the model
started consistently over-predicting the salinity. During the high-salinity event, the model con-
sistently predicted between 1 and 2 psu above the measurements. Model-data comparison for
winds indicate that the easterly winds are stronger in the model possibly causing a stronger
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inflow of estuarine waters into the estuarine system via Mobile Bay Main Pass as shown in
Fig. 4(c). On October 27, 2015, the model salinity peak was 34 psu, compared to 33 psu mea-
sured at DPHA station. The root mean squared error for the modeled salinities at DPHA station
compared to the measurements for the month of October 2015 was 1.77 psu while a comparison
of modeled and measured salinities at the USM buoy at 20-m isobath [Fig. 1(a); USM] showed
that the model results were within 0.5 psu of the measurements. Overall, the model predictions
were in agreement with the measurements in capturing the trends during the time period of the
inflow event in October 2015 validating the model’s capability to represent the estuarine-shelf
exchange at the barrier island inlets. The discrepancies between model and measurements for
high-salinity values during the inflow event may be because the ambient salinity on the shelf or
in the estuaries may be higher in the model causing higher salinities predicted by the model
during the inflow event. In addition, the horizontal diffusion or the vertical mixing of the
1-km model at these small scales for the shallow waters of the nGoM may result in such dis-
crepancies between the model and the measurements at the mouth of Mobile Bay.

Surface salinity measurements at the USM buoy (results not shown here), located at the 20-m
isobath [Fig. 1(a); USM], showed the salinity at the inner-shelf exceeded 30 psu in July 2015 and
stayed over 30 psu until the end of the calendar year. Moreover, the USM buoy showed the
salinity in October remained over 33.5 psu for the majority of October 2015 until a 2-psu

Fig. 5 Measurements (blue) versus NCOMmodel predictions (red) of (a) east–west wind speed at
the OB buoy, (b) north–south wind speed at OB buoy, (c) water level at Dauphin Island station
(DPHA) above Mean Lower LowWater (MLLW), and (d) salinity at Dauphin Island station (DPHA)
in October 2015. Shown measurements and model results were 40-h moving average filtered.
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drop from 34.5 to 32.5 psu due to Patricia’s remnants moving over the area. Figure 6 shows
salinity measurements (blue) recorded at 30-min (DPHA, CRTA) or 6-min (M14) frequency at
stations in the study area along with the 36-h moving averaged salinity variations (red) to filter
out the tidal fluctuations. Figure 6(a) shows salinity at the Dauphin Island station [Fig. 1(a);
DPHA] recorded every 30 min (blue) between 2011 and 2015, and Fig. 6(b) shows the salinity
for 2015 only. Salinity increased during the spring and summer for all years and peaked during
the fall months. It is seen that the salinity rarely exceeded 30 psu between 2011 and 2015. In fact,
salinity only exceeded 30 psu for a combined duration of less than 12, 9, 6, 3, and 23 days during
2011, 2012, 2013, 2014, and 2015, respectively. Therefore, we choose 30 psu as a high-salinity
threshold at this station and north of the barrier islands. Salinity exceeded this threshold at DPHA
only episodically and for short intervals. In fact, fall 2015 was the only period when the salinity
exceeded and persisted over 30 psu for an extended period of time (7.5 days) and over 29 psu for
11 straight days. Figure 6(b) shows that salinity records at Dauphin Island station, DPHA,
remained over 30 psu for most of the second half of October. A similar persistent salinity
increase was also observed in other stations in the MSS.

The salinity measurement at CRTA station [Fig. 1(a)] on the eastern side of the MSS close to
Mobile Bay is shown in Fig. 6(c). Since this station is north of the barrier islands and inside the
MSS, the peak salinity was lower than the DPHA station due to the proximity to low-salinity
freshwater sources and mixing inside the estuarine system. However, while the salinity at this
station reached 25 psu episodically, it exceeded 25 psu in October 2015, and similar to DPHA,
it stayed over this value for more than a week. Figure 6(d) shows the salinity measurements at
MDMR/USGS station M14 which is on the western end of the MSS [Fig. 1(a); M14]. The salin-
ity exceeded 30 psu in mid-October and stayed above 30 psu for the same late-October duration
shown in the other stations. The fact that similar salinity fluctuations were seen not only at the
DPHA but also at CRTA and M14 at both ends of the MSS indicates that the inflow of saline
waters was a system-wide event impacting the entire MSS.

Since high-salinity events in the MSS are indicative of intrusions of high-salinity shelf water,
these events have important implications for potential transport of larvae, pollutants, and toxic
algae into the MSS. An important question then is to understand whether the high-salinity signal
observed in October 2015 is atypical or not. To do that, the October 2015 event was compared
with October conditions in other years. An anomaly study on salinity measurements was con-
ducted for these purposes. A 9-year monthly climatology of salinity values from 2007 to 2015
was generated using salinity from near-bottom temperature and conductivity measurements at

Fig. 6 Salinity measurements (raw data in blue and 36-h filtered data in red) at (a) DPHA station
from 2013 to 2015 and a subset for only 2015 data for stations at: (b) DPHA, (c) CRTA, and
(d) M14.
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MDMR/USGS stations. Monthly mean salinities were calculated for the entire time series at
each station. Monthly anomalies were calculated as the difference between the monthly clima-
tology [climðSÞ, average from 2007 to 2015] and the monthly mean value of each year (hSimth).
Figure 7 shows the salinity anomalies for the last 5 years (2011 to 2015) of the 9-year period,
during which interannual fluctuations were apparent. Elevated salinity shown as positive salinity
anomaly peaks in late summer and fall months (August to October) in 2014 and 2015 at all
stations, and early summer months (May to July) in 2011 and 2012 at most stations. The highest
positive salinity anomaly was seen in October 2015 (shown in red) at all MDMR/USGS stations
across the MSS. Monthly anomalies for temperature and water surface elevation measurements
at MDMR stations (not shown here) were also calculated. Temperature anomalies showed no
significant difference between years at all stations. October 2015 had one of the highest sea
surface elevation anomalies (up to 50 cm higher water level) during the 2011 to 2015 time
frame due to the passage of Patricia’s remnants.

Figure 8(a) shows the October in situmean salinities and variability from 2007 to 2015 at the
MDMR/USGS stations and the NOAA/NDBC stations in the study area. October mean salinities
were the highest in 2015 at all stations. This indicates that October 2015 had more saline offshore
water inflow into the MSS and Mobile Bay and toward the station locations. The highest sal-
inities of October 2015 were measured at the MSS stations; M2, M6, M7, M14, DPHA, and
PPTA. Stations M2, M6, M7, and M14 were either near the barrier island inlets (M6, M14) or
relatively away from the coastline and freshwater sources (M2, M7).

The DPHA station at Dauphin Island is exposed to saline offshore waters via the exchange
through the Mobile Bay Main Pass, while PPTA at Perdido Pass is already located at the Gulf of
Mexico coastline directly exposed to the inner-shelf waters. In addition to examining monthly
mean salinity, it is also important to know for how long salinity exceeded a certain threshold.
Figure 8(b) shows the number of days in October for which salinity exceeded 30 psu. It is clear
that 2015 had the most number of days, especially at those stations with the highest monthly
mean salinities mentioned above. For M6 and PPTA, the salinity exceeded 30 psu for over
25 days in October 2015, followed by M2 where the salinity exceeded the 30 psu threshold

Fig. 7 Monthly salinity anomalies in psu from 2011 to 2015 at the MDMR stations in the MSS.
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for at least 15 days. At M7, M14, and DPHA, measured salinity exceeded 30 psu for at least 10
days in October 2015 and did not exceed this threshold in any of the other years with available
salinity measurements.

Some stations, e.g., M3, M4, M8, M10, M11, and MBLA, were never exposed to salinities
above 30 psu due to proximity to freshwater sources, therefore, a lower salinity threshold of
26 psu was also used at all stations between 2007 and 2015. Figure 8(c) shows that the salinity
values exceeded 26 psu at least at one station each year, but the exceedance frequency was
the highest in 2015. Measured salinity exceeded the 26-psu threshold more frequently in
October months of 2014 and 2015. It was found that the salinity exceeded this value for
most if not all days in the month of October at the only open water station PPTA. The exceedance
ratio was also high at M6 and M7, followed by M2, DPHA, and M14. While the salinity
never exceeded 30 psu at M1 and M5, it exceeded 26 psu for more than 2 weeks at M1
and M5. Figure 8 highlights that October 2015 was different from earlier years and that the
salinity in all these coastal stations were higher than usual within the 9-year time period of
2007 to 2015.

Fig. 8 (a) October mean salinities from 2007 to 2015 at the MDMR/USGS and NOAA/NDBC sta-
tions. Number of days when the October mean salinities exceed (b) 30 psu (c) 26 psu at all the
stations (gray areas indicate no data). (d) Study area showing station locations.
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3.3 Ocean Color Data

The analysis using the NCOM salinity and the salinity exceedance and anomaly analysis on the
in situ measurements demonstrated that October 2015 had a high-salinity event at multiple sta-
tions across the system from Mobile Bay to western MSS. Satellite ocean color chlorophyll-a
imagery was used to determine the corresponding surface, or more precisely over the first optical
depth, biological response associated with the anomalous surface salinity conditions over the
broader region. MODIS-Aqua October monthly chlorophyll-a anomaly fields were calculated
for the Mississippi Bight from 2003 to 2015 and shown in Fig. 9. The October 2015 monthly
chlorophyll-a anomaly has a negative anomaly (less chlorophyll-a than the monthly climatology)
across the entire Mississippi Bight except very near the Mississippi river outlets in the Bird Foot
Delta. The only other year with negative chlorophyll-a anomaly to such a great extent was 2003.

Fig. 9 October monthly mean MODIS-Aqua chlorophyll-a anomaly in the Mississippi Bight from
2003 to 2015.
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The other years at least have a positive anomaly either outside the MSS on the shelf or inside the
MSS. The reason for most years to have positive chlorophyll-a anomaly either inside the MSS or
just south of the barrier islands is probably high chlorophyll-a associated with freshwater sources
inside the MSS and plume waters coming out of the estuarine system. Figure 10 shows the
October monthly chlorophyll-a anomaly of each year along transects (Fig. 1; red lines) inside
the MSS [Fig. 10(a)] north of the barrier islands and outside the MSS [Fig. 10(b)]. Ocean color
data clearly shows that October 2015 has the largest negative chlorophyll-a anomaly both inside
and outside the MSS. It is important to notice that 2015 is not the only year with such high-
negative chlorophyll-a anomaly (−4.0 to −5.0 mg∕m3) at both transects. October 2003 had a
similar chlorophyll-a anomaly.

While chlorophyll-a anomaly is generally positive inside the MSS due to freshwater
dominance that brings sediment and nutrients, it is generally negative outside the MSS due
to offshore water dominance. October 2007 and 2013 had low-chlorophyll-a anomalies
(−1.0 to −3.0 mg∕m3) inside the MSS similar to October 2015, but not necessarily as negative
a chlorophyll-a anomaly as October 2015 outside the MSS. So, the negative chlorophyll-a
anomaly outside the MSS may be attributed to the fact that the shelf was covered by low-chloro-
phyll-a/less turbid offshore saline waters outside the MSS in October 2015 and the estuarine
low-salinity high chlorophyll-a, and turbid waters were not flushed out of the MSS preventing
the formation of high-chlorophyll-a plumes during most of the month.

An ANOVA was performed on the October monthly anomaly values to see the difference in
chlorophyll-a anomaly by year followed by a multiple comparison test on the monthly mean
chlorophyll-a anomaly to determine which years had a chlorophyll-a anomaly distribution either
similar to or significantly different from October 2015 inside and outside the MSS [see Fig. 15 in
the Appendix]. Outside the MSS, the October 2003 anomaly was the only one similar to October
2015 and all the other years were significantly different. Inside the MSS, the multiple year com-
parison showed that October 2003 and October 2007 were similar to October 2015 with low
chlorophyll-a. The other 10 years were found to be significantly different and have higher chloro-
phyll-a than 2015, but the October 2013 results had the closest anomaly means [Fig. 15 in the
Appendix) and was similar to October 2015 in transect lines both inside and just outside the MSS.

3.4 Meteorological and Hydrological Data

It is important to understand the forcing mechanisms that generated the high-positive salinity
anomaly along with the low-negative chlorophyll-a anomaly in October 2015. For this reason,
the meteorological data (i.e., wind, water level) and hydrological data (i.e., discharge from
freshwater sources into the MSS and Mobile Bay) were analyzed to understand the balance
between high-salinity/low-chlorophyll-a offshore waters and the low-salinity/high-chlorophyll-a
freshwater sources.

The role of wind forcing was assessed using a correlation analysis between the wind mea-
sured at the OB Buoy [Fig. 1(a); OB] and the adjusted water level (i.e., inverse barometer effects

Fig. 10 October monthly mean MODIS-Aqua chlorophyll-a anomaly (mg∕m3) from 2003 to 2015
along a transect (a) inside the MSS and (b) outside the MSS. Transect locations plotted in Fig. 1(a)
as dotted red lines.
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removed) and salinity data at the Dauphin Island station [Fig. 1(a); DPHA]. The component of
the wind forcing with the maximum correlation was determined by calculating a lagged corre-
lation between wind vector component contribution at 5-deg intervals and the scalar parameter of
interest (water level or salinity) during the month of October. The highest correlations between
the wind component and water level were along the orientation of 290 to 330 deg/110 to 150 deg
(i.e., NW/SE axis) with r-values of 0.90 to 0.93 with lags of 12 to 23 h. Similarly, the highest
correlations between the wind component and salinity were along the orientation of 315 to
350 deg/135 to 170 deg (i.e., NNW/SSE axis) with r-values of 0.80 to 0.92 corresponding
to lags of 0 to 2 h. These results are consistent with the combined effects of coastal Ekman
circulation driving coastal set-up and set-down via along-shelf wind forcing, as well as direct
wind forcing from the N/S component in the shallower coastal areas where the Ekman boundary
layers would be expected to overlap (i.e., water is being directly pushed onshore contributing to
the coastal set-up or set-down). The wind-driven changes in coastal water level result in estua-
rine-shelf exchange that alter the estuarine salinity as observed. Salinity is somewhat more
sensitive to the N/S component as indicated by the more NNW/SSE orientation and shorter lag
time (i.e., direct wind response would be expected to be faster than the local Coriolis timescale).
This correlation analysis shows that the wind forcing was the primary driver of the low-
frequency salinity variability during this period and that wind generally from the southeast
quadrant is favorable for high-salinity intrusion events.

The correlation analysis (above) showed positive correlation between wind and salinity in the
40- to 215-deg interval with decreasing correlation for directions larger than 180 deg. Given that
southerly to easterly winds could drive salinity intrusions, the wind from the 45- to 180-deg
direction is considered favorable for forcing the transport of saline offshore waters toward
all the barrier islands around the MSS including the N–S oriented Chandeleur Islands. In par-
ticular, 13 years (2003 to 2015) of wind data for October at the Dauphin Island station (Fig. 1;
DPIA) were analyzed. An important factor to consider is the wind persistence for a nonstop
consecutive time. Consecutive winds in certain directions will force saline offshore waters
toward the MSS and Mobile Bay, as well as prevent estuarine waters from flowing out of
the MSS and Mobile Bay. We found that the number of consecutive hours in October since
2003 with the winds within the 45- to 180-deg interval was the highest in 2015 with 204 con-
secutive hours. This is approximately an 8.5-day period between October 19 and 27, 2015.
October 2013 winds follow with 143 consecutive hours, October 2004 with 132, and
October 2007 with 122 consecutive hours of wind within the favorable 45 to 180 deg interval.
The October monthly chlorophyll-a anomaly for 2003 and 2007 was statistically similar to
October 2015, however, the October 2013 salinity anomaly was not as high as that of 2015.
Unfortunately, there were no salinity measurements available from 2007 to compare.

It is not only the persistence of wind from favorable directions, but also the strength of the
wind that will impact the intensity of forcing. Therefore, wind roses were created for those peri-
ods when the wind at the DPIA station was consecutively within the 45- to 180-deg interval to
visualize the directional spread within the interval along with the wind speed as shown in Fig. 11.
The time period in which the wind was persistently within the 45- to 180-deg interval is shown
below the wind rose of each year. The wind speed exceeded 15 m∕s only in October 2015
(Fig. 11; at the bottom), 2004, and 2006; and for all these years, wind was from E-SE for more
than 50% of the favorable wind window. While the wind speed was high in 2006, the number of
consecutive hours was lower (64 h). On the other hand, 2004 winds were strong, but Figs. 9 and
10 indicate that this was a high-chlorophyll-a year possibly due to high-freshwater discharge
both from the Mississippi River onto the shelf and/or from other sources into the MSS.

Figure 12(a) shows the river discharges measured at USGS stream gauges at Pearl,
Pascagoula, Alabama, and Mobile Rivers (see Table 1 for station locations). In 2015, the
river discharge was lowest in August, September, and November at all river systems in the
area. Both the Pearl and Mobile Rivers are good indicators of the variability of freshwater
input intensity in our region because of their discharges into the MSS and Mobile River, respec-
tively. Therefore, the October discharges from 2007 to 2015 for those two rivers were analyzed
in Figs. 12(b)–12(i). October 2009 was not shown in Fig. 12 due to the extremely high-discharge
offsetting the y-axis. Measurements from the Pascagoula and Alabama rivers were not shown
in Fig. 12 due to their similarity to the Pearl and Mobile Rivers’ discharges, respectively.
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Fig. 11 October wind roses from 2003 to 2015 during the time windows when the wind was
uninterruptedly from the [45-180°] direction interval.
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The discharge at Pearl River was seasonally low and around 50 m3∕s for almost all years and
was generally less than 250 m3∕s for the Mobile River. The Mobile River showed higher
fluctuations within October 2015, however, discharge variations were similar for both rivers.
At Pearl River, October 2007 and 2010 had the lowest discharges, along with 2015, until
the discharge peaks after passage of cyclone Patricia’s remnants in late October 2015. At
Mobile River, the discharge was very low between October 19 and 26, 2015, but the lowest
October discharge year was 2010, followed by 2011. While high-freshwater input into the
Mobile Bay and MSS is expected to decrease the likelihood of having elevated salinities inside
the estuarine system, similarity in the intensity of discharge for all years implies that the low
rainfall and low discharge in the area were not a significant contributing mechanism for the
increased salinities inside the MSS and Mobile Bay while the wind over the area is the primary
driver for the inflow event.

4 Conclusion

This study combined model forecast products, in situ measurements, and satellite imagery data
to study an episodic strong and persistent inflow and intrusion of high-salinity offshore Gulf of
Mexico waters into the MSS and Mobile Bay estuarine systems. In situ measurements showed
elevated salinity measurements at coastal stations for an extended period (from October 18 to
October 27, 2015) before Patricia’s remnants passed. Monthly anomalies of salinity, tempera-
ture, and water level were calculated from 2007 to 2015 in the Sound. All stations inside the MSS
had the highest positive salinity anomalies during October 2015 suggesting an excessive influx
of saline shelf waters into the Sound. Model predictions of surface salinity and current fields
showed an inflow of shelf waters into the estuarine system mainly via the Mobile Bay Main Pass
due to strong easterly/southeasterly currents on the shelf. Patricia’s remnants in late October
further enhanced the positive salinity anomaly. This strong inflow into Mobile Bay possibly
prevented the flushing until the passage of Patricia’s remnants and several cold fronts.

Fig. 12 (a) Calendar year 2015 discharge measurements at Pearl, Pascagoula, Alabama, and
Mobile Rivers. (b)–(i) October discharge measurements at Pearl River (blue) and Mobile River
(green) from 2007 to 2015. October 2009 is not shown due to extremely high-discharge offsetting
the y -axis.
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MODIS-Aqua monthly chlorophyll-a anomalies were calculated from 2003 to 2015 using
monthly means and climatology to define the biological response to the physical processes
before the passage of Patricia’s remnants. The October 2015 chlorophyll-a anomaly had the
lowest (negative) anomaly both inside the MSS and outside on the Mississippi Bight shelf indi-
cating a reduced biological activity in near-surface waters. A multicomparison test of all the
October chlorophyll-a monthly anomalies revealed that all years except 2003 were significantly
different from 2015 for both inside and outside the MSS. The chlorophyll-a anomaly for October
2007 showed a similar chlorophyll anomaly to 2003 and 2015 inside the MSS. Unfortunately,
the limited salinity dataset for 2007 does not allow us to make a definitive conclusion; however,
the low-chlorophyll-a anomaly could be due to low discharge and weaker westward transport
(NCOM model current data for 2007 not shown). The anomaly analysis on both in situ mea-
surements and satellite imagery combined with the model forecast fields indicated that the high-
salinity offshore waters were brought onto the entire Mississippi Bight shelf and the currents
transported them into the estuaries where both low-salinity estuarine waters and high-salinity
shelf waters were transported west due to strong easterly currents. A salinity exceedance analysis
at all stations showed that October 2015 had the highest salinity records at many stations across
the MSS, showing that this episodic event was a system-wide event.

An analysis of the hydrology and meteorology of the study area showed that the river flow
was seasonally low during the time of the shelf water intrusion event before it peaked due to the
heavy precipitation of Patricia’s remnants and subsequent cold fronts. The inflow event preced-
ing the passage of cyclone Patricia’s remnants followed by Patricia’s wind shift allowed the
flushing of the estuarine waters onto the shelf creating plumes on the inner-shelf and mid-
shelf accompanied with strong mixing and resuspension due to the storm. The highest corre-
lation between wind and salinity was found for the wind from the [45-180]° direction interval.
The correlation between wind and water level was also high in the interval showing that the
coastal set-up and the rise in October 2015 were mainly due to onshore shelf wind forcing.
Easterly, southeasterly, and southerly winds were persistent in October 2015 during the
8-day period leading to this wind shift. An analysis on the uninterrupted wind from the
[45-180]° direction for all years showed that October 2015 had the longest duration for
this wind interval, which is possibly favorable to create currents that will allow the influx of
shelf waters into the MSS and Mobile Bay and to block estuarine waters in the Sound and Bay.

After the DWH oil spill event, special attention has been directed to the circulation and
dynamics near susceptible coastal ecosystems such as the estuaries within the Mississippi
Bight. Their valuable fisheries and nursery habitats could be negatively impacted or even col-
lapse in the case of toxic oil/dispersant or harmful algal blooms events. The MSS and Mobile
Bay are river discharge dominated systems, although the exchange with saline Mississippi Bight
Shelf waters is tide-dominated and occur frequently in short-time episodic events. Results show
that the MSS and Mobile Bay are not only limited to short-time episodic events (hours to a few
days), but strong and persistent (>10 days) inflow of saline Mississippi Bight shelf waters occur.
October seems to be a favorable month for extended intrusion of offshore waters types of events,
so special attention needs to be considered for an oil spill during this time frame. The results
conclude that the MSS was exposed to elevated salinities for over 10 days due to inflow and
intrusion of shelf waters during this October 2015 event, which, if this happened concurrently
with an oil spill could be detrimental to the coastal habitats and local fisheries.

Appendix
Quality controlled MODIS-Aqua Level-3 SMI chlorophyll-a monthly means and climatology at
4-km spatial resolution were downloaded from the NASA-Ocean Biology Processing Group
website.43 Figure 13 shows the MODIS-Aqua October chlorophyll-a monthly mean fields
for the study area from 2003 to 2015 and Fig. 14 shows the 13-year MODIS-Aqua October
monthly mean climatology field for the entire time period. The results for the October monthly
mean chlorophyll-a anomaly fields calculated from the monthly mean and the climatology
fields were shown in Fig. 9.

An ANOVAwas performed on the October monthly anomalies inside and outside the Sound
shown in Figs. 9 and 10. A multiple comparison test was conducted on the statistics of the
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Fig. 13 MODIS-Aqua October monthly mean chlorophyll-a in the Mississippi Bight from 2003 to
2015.

Fig. 14 MODIS-Aqua October chlorophyll-a climatology in the Mississippi Bight derived from
October monthly means from 2003 to 2015.
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ANOVA results to find out which years had significantly different chlorophyll-a anomalies than
that of October 2015 inside and outside the MSS. ANOVA results showed that the
p-value was very small (p < 0.05) both inside and outside the Sound indicating that differences
between means were significant and October 2015 had a significantly different chlorophyll-a
distribution than other years. Figure 15 shows the results of the multiple comparison test.
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