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|. Background on Hurricane
Lili (2002)



HURRICANE LILI: AGOOD EXAMPLE OF THE LIMITATIONS
OF OPERATIONAL INTENSITY FORECASTING
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HURRICANE LILI DISCUSSION NUMBER 46
NATIONAL WEATHER SERVICE MIAMI FL
5 PM EDT WED OCT 02 2002

LILI WENT THROUGH ANOTHER BURST OF INTENSIFICATION THIS AFTERNOON...
WITH THE CENTRAL PRESSURE FALLING FROM 954 MB TO 941 MB IN ABOUT

5 HR. THE HURRICANE HAS CONTINUED TO DEEPEN AT A SLOWER RATE SINCE
16Z...WITH THE CENTRAL PRESSURE FALLING TO 938 MB AT 20Z. THE
MAXIMUM FLIGHT LEVEL WINDS FOUND BY THE VARIOUS AIRCRAFT SAMPLING
LILI SO FAR ARE 136 KT...SO THE INITIAL INTENSITY IS SET TO 120 KT.

LILI IS SHOWING SIGNS OF PEAKING...AS THE AIRCRAFT AND SATELLITE
IMAGERY INDICATE THE BEGINNING OF AN OUTER EYEWALL THAT WILL LIKELY
BRING A HALT TO THE CURRENT INTENSIFICATION.

(TEXT DELETED)

IN ADDITION TO THE CONCENTRIC EYEWALLS...THE ACTUAL INTENSITY IS
CATCHING UP WITH THE SATELLITE SIGNATURE AND THE OUTFLOW IS BEING
RESTRICTED TO THE WEST AND SOUTHWEST BY AN UPPER-LEVEL TROUGH.
THESE THINGS SUGGEST THAT LILI SHOULD PEAK IN THE NEXT 6-12 HR THEN
UNDERGO FLUCTUATIONS IN STRENGTH UNTIL LANDFALL. REGARDLESS OF THE
EXACT INTENSITY...LILI SHOULD MAKE LANDFALL AS A MAJOR HURRICANE.

FORECASTER BEVEN
FORECAST POSITIONS AND MAX WINDS

INITIAL 02/2100Z 25.9N 90.0W 120 KTS

12HR VT  03/0600Z 27.5N 91.4W 125 KTS

24HR VT  03/1800Z 29.8N 92.3W 125 KTS...INLAND

36HR VT  04/0600Z 32.2N 91.9W 65 KTS...INLAND

48HR VT  04/1800Z 36.1N 89.0W 35 KTS...INLAND EXTRATROPICAL
72HR VT  05/1800Z 45.0N 74.0W 30 KTS...INLAND EXTRATROPICAL
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LILI’'S RAPID WEAKENING JUST BEFORE LANDFALL IS
NOT WELL UNDERSTOOD.

WAS IT CAUSED BY:

- AN INTERNAL (INNER CORE, E.G. EYEWALL)
MECHANISM?

- VERTICAL WIND SHEAR, OR OTHER ENVIRONMENTAL
INFLUENCES SUCH AS MOISTURE, STABILITY?

OR

-THE OCEAN, SUCH AS ISIDORE’S WAKE AND/OR COOLER
SHELF WATERS?

By analyzing conventional, NASA/NOAA satellite, and
reconnaissance data, and assimilating in a mesoscale
model for sensitivity runs, we are testing these
hypotheses.

We are also analyzing Lili’s rapid intensification on
10/2/02, which also was not predicted accurately.



Il. Datasets and
assimilation strategies



e Conventional (Radiosonde, METAR,
buoy, ships)
* AVN model data for boundary conditions
o Satellite:
SST: Terra, Aqua, TRMM, AVHRR
T, Td profiles: Terra
Surface wind: QUIKSCAT
Cloud-drift winds: GOES
* Reconnaissance data (T, Td profiles)
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What is data assimilation?

Data assimilation is the

technique whereby
observational data are
combined with output from a
numerical model to produce an
optimal estimate of the evolving

state of the system.




In variational data analysis the analysis is found by minimisation of a cost function,
1 1

Japvar = Flx— xp) BT (x — %) + 5(H(x) - v RYH(x)—y) (1)
Tipve = 0%~ %) B (0 —x3) + 5(H(Mi(x0) ~ i) 'R HOM(x0) ~yi)  (2)

with respect to the state vector x. Here_y_is a vector containing all gbservations, while H is a so-called
observation operator, which maps from model space to observation space (examples will be given later).
Xg is the backeround (a recent NWP forecast, valid at the time of the data analysis). B_is the error
covariance matrix of the backeround field, R is the error covariance matrix of the ghservations. The
matrices are of order N3y p_, ..o and N3 | approximately 1014 and 108 for a typical NWP run at
DMI.

In 3DVar one operates with a single data assimilation time window centred on the time of the analysis,
e.z. a 3 or 6 hour window for a NWP system making a new analysis for every 6 hours, or a 3 hour
window for a 3 hour eyeling system. For each observational site the system selects the datum closest
in time to the analysis time, if there are other observations from the site they are rejected.

In 4DVar the observations are binned into the time-slots i, and M; is the NWP model operator which
turns state vector xg into its forecast value at time i. Typical time-slots are 1 hour wide. This enables
one to use observations from the same site obtained at different times, and it minimises the offset in
time between the time of the observations and the valid time for the forecast fields against which the
observations are compared. The drawback is that 4DVar requires far more computer-time.



3DVAR: Observation increments from
different times are lumped together. A
new analysis is done, and forecast is
recycled.
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4DVAR allows observation increments to
be used at the times of the observations
and corrects forecasts repeatedly over
assimilation window, then initiates a
forecast.
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The systems used to quality control the observational data include

e Bad reporting practise check.
e Blacklist check. For stations which are found to ‘always’ report erroneous data.
e Gross check. Against some limits, e.g. from climatology.

e Background check. Based on the deviation between the observation and the expectation based
on a short term forecast.

e Buddy check. Checking against nearby observations.

e Redundancy check.

In addition observations are selected or rejected according to the time they were obtained. For a given
tvpe of observation from a given site the observations closest to the centre of the data assimilation
time window is chosen. For 3DVar and most other assimilation systems (see later for definitions) this
window consists of a single rather large time slot, e.g. 3 or 6 hours, while in 4DVar the window is
broken down into smaller sub-windows, being typically 1 hour wide each, while the full window may
be larger than in 3DVar. As a result more observations can be utilised in 4DVar.



Model computational steps:

1) Quality control

2) Hurricane vortex algorithms

3) MSU --- Cressman scheme (simpler than
3DVAR); 9-km resolution in MM5

4) NCAR --- ADVAR; 27-km resolution in MM5

5) 6-hour cycling for both types of schemes

6) SST forcing using satellite data in progress



I1l. MM5 4DVAR work
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4D-Var cycling experiment design for weakening period
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For the intensification, we did the same experiment, on domain2
with 27km horizontal resolution and 118*142 grids and 33 layers.
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Presentation Notes
We can see , in the 12 hours assimilation window, the SLP are improved to close to the observation.
At the end of assimilation window of 4DVAR6H1, the SLP is 956 hPa, in which there is a 15 hPa error
Comparing with obervation 941hPa. Through 4DVAR6H2, the SLP is adjusted to 943 hPa at 1800 UTC. At the end of 4DVAR6H2, the SLP is 945hPa, 5hPa error than observation. We start the forecast from the end time of 4DVAR6H2.


Cost function and gradient in 4DVAR6H1 and 4DVARG6H?2
(weakening period)
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Gradient for both 4ADVAR6H1 and 4DVARG6H2 have good
convergence, which show all data were assimilated well.

30 iterations were integrated in each 4DVAR assimilation
window. Each iteration takes about 5 hours.



Optimal initial SLP of 4ADVARG6H1 at 1200 UCT 2 October
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Presentation Notes
The warm and moisture structure of hurricane are re-constructed by 4D-Var Cycling experiment


Optimal initial condition of 4ADVAR6H?2 at 0000 UTC 3 Oct.




Based on the initial condition (at 0000 UTC 3 Oct. )
from 4D-Var cycling experiment,

24 hour forecast 1s conducted on 3 nested domains.
Initial condition of domain 15t come from AVN,
domain 29 Come from this, and domain 3rd is
Interpolated from domain 29,

The grid on 3 domain is : 48*50, 85*85, 142*142
Resolution: 81, 21, 9km
Vertical: 33 layers

Forecast result analysis for weakening.

|
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mixing ratio (kq/kg) on 300 hPa at 2002:10:3:3
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From this level, does the mixing ratio show some dry air intrusion???


Il. SST grid generation
from satellite and buoy



SST Datasets

Satellites

Agua and Terra — NASA EOS "Level-2" 2km data in HDF format
http://eospso.gsfc.nasa.qgov and http://eosdatainfo.gsfc.nasa.gov
AVHRR - NASA JPL 4km global data in HDF format
(http://podaac.jpl.nasa.gov/sst/)
Quality Control data
http://www.nodc.noaa.gov/sog/pathfinder4dkm/userquide.html
TRMM - TMI data (http://www.remss.com/tmi/tmi description.html)

Buoys

http://www.ndbc.noaa.gov
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AVHRR Quality Levels (0O — poorest, 7-highest)

Gac Initial Tests
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Combination of individual quality tests to derive an overall pixel quality level. The location of the

test result in the appropriate mask variable is indicated (in parenthesis) as “MXBY”, where X is 1
(mask 1) or 2 (mask 2), and Y is the bit (1-8) in the corresponding mask variable.

Figure duplicated from Page 9194 of the Journal of Geophysical Research, VVol. 106, No. C5,
May 15, 2001. Kilpatrick et al. Overview of the NOAA/NASA advanced very high resolution
radiometer Pathfinder algorithm for sea surface temperature and associated matchup database.



AVHRR (night October 2, 2002)

-7 with land mask

Quality levels 3
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Aqua and Terra (night October 2, 2002)

AQUA_SST October 02, 2002 20Hrs TERRA_SST October 02, 2002 17Hrs
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Data Preparation for Comparison
(Aqua vs AVHRR and Terra vs AVHRR)

Interpolate Aqua/Terra SST data to a 4km gridded representation
Filter all SST data so that SST is between 23 C and 33 C

Create grid mask for all the SST data

Create land mask for the specified spatial domain

Filter AVHRR data to keep quality levels 3-7 only



AQUA-AVHRR October 02, 2002 20hrs-20hrs
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SST

SST

SST Time Series Along Lili's Track

Datasets: Aqua, Terra, AVHRR, TRMM, Buoy

SST within 0.05 degs of Lili at 2002100200 (x=-85_.70 y=23.00) SST within 0.05 degs of Lili at 2002100212 (x=-88_.30 y=24._.40)
least square polynomial fit with order=4 least square polynomial fit with order=5
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SST

kal

26

SST Time Series Around Buoys

Datasets: Aqua, Terra, AVHRR, TRMM, Buoy

SST within 0.05 degs of Buoy 42001 (x=-89.66 y=25.84)
least square polynomial fit with order=5
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SST within 0.05 degs of Buoy 42007 (x=-88.77 y=30.09)
least square polynomial fit with order=5
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SST within 0.05 degs of Buoy 42036(x=-84.51 y=28.51)
least square polynomial fit with order=5
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least square polynomial fit with order=5
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least square polynomial fit with order=5
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Gridded SST of All Data

GRIDDED_SST September 25, 2002 00Hrs

orders (1-5) least square fit with 0.05 degs neameighbor
-100° -95° 90° -§5° -80°

Sept 25, 2005 - Oct 5, 2005

Data (Aqua, Terra, AVHRR, TRMM,
Buoy)

Grid spacing = 0.02 degrees
Land mask
Aqua and Terra data which are colder

than the nearest 3 neighbors by less
than 0.7 C (Uniformity Test)

AVHRR data with quality levels 4 to 7
23 C<SST<33C

Filled in data points at satellite passes
by averaging nearest neighbors with
distance up to 0.05 degrees

Filled in data points between satellite
passes using least square polynomial

with different orders -100° 95° 90° -85° 80"
Goal is to generate a grid of SST data 25 26 21 28 29 30 31

for October 1, 2, and 3. GRIDDED_SST




Adua, Terra, AVHRR, TRMM SST (before & after processing)
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Adua, Terra, AVHRR, TRMM SST (before & after processing)

AQUA_SST October 02, 2002 08Hrs TERRA_SST October 02, 2002 05Hrs

GRIDDED SST October 2, 2002 08Hrs

orders (1-5) least square fit with 0.05 degs nearmeighbor
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National Weather Service SST versus satellite SST, Oct 2

NWS SST (from AVN) New SST

25 26 27 28 29 30 31

ITemp300-SST GRIDDED_SST
AVN SST lacks details and SST extremes Note cold water off Louisiana (caused most of Lili's weakening?)
Smoothness due to a 7-day running mean, and Note cold wake behind Lili

an e-folding time of 90 days to dampen anomalies Note warm water northwest of Yucatan (caused Lili's intensification?)



V. Summary



1)

2)

3)

4)

)

Hurricane Lili simulations conducted using MM5 to
examine Intensity swings, using 3 domains to 9-km
resolution.

Sensitivity done using vortex bogussing scheme, T and Td
profiles (dropsondes and Terra). QUIKSCAT and cloud-
drift winds also used.

Cycled assimilation runs conducted using Cressman (MSU,
not shown) and 4DVAR (NCAR). The 4ADVAR takes 300
hours, and is limited to 81-km and 27-km grids. Cressman
done at 9-km as well.

T and Td data improve track forecasts considerably, and
weakening case a little

It is hypothesized that the new satellite SST data will
Improve the Hurricane Lili intensity simulation. This work
IS ongoing.



VI. Commercial potential



1)
2)
3)
4)
9)
6)

Code for data cycling

QC algorithms

Cressman assimilation scheme

ADVAR assimilation scheme

Gridded SST algorithm using multiple satellites
Algorithms to process NASA satellite data in hdf format
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