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Abstract

In order to assist in comparing the computational techniques
used in different models, the authors propose a standardized set of

one-dimensional numerical experiments that could be completed for
each model. The results of these experiments, with a simplified form
of the computational representation for advection, diffusion, pres-
sure gradient term, Coriolis term, and filter used in the models,
should be reported in the peer-reviewed literature. Specific recom-
mendations are described in this paper.

As part of a recent upper-level graduate class on
mesoscale meteorological modeling at Colorado State
University, students were tasked with evaluating the
numerical schemes used by operational and research
models on a variety of spatial scales. To perform this
assessment, the advection, diffusion, pressure gradi-
ent, Coriolis, and filtering terms used by these models
were to be reduced to their simplest possible form.
Thus, each term was to be reduced to a one-dimen-
sional time-dependent problem in which effects such
as grid stagger and multidimensions were ignored.

Much to our surprise, this apparently simple exer-
cise was generally very difficult to do because of the
poor documentation in the peer-reviewed literature of
the algorithms used by many of the models. While the
one-dimensional evaluations are not a complete as-
sessment of the fidelity of a numerical scheme as
applied in a model because grid stagger, etc., are not

considered, algorithms to represent such effects as
advection, diffusion, the pressure gradient force, and
the Coriolis term, in their simplest form, should be
accurate in terms of how well they preserve both
amplitude)., and phase speed CII. Also, any additional
filtering used by a model should be evaluated in terms
of its damping effect per application. Such filtering is
often used in time and space, as either an explicit filter
or a smoothing function.

There are several modelers who do provide effec-
tive descriptions of their numerical schemes. These
include, for example, Schlesinger (1985, 1988) and
Ikawa and Saito (1991). Black (1988,1994) reports
the numerical schemes used in the National Meteoro-
logical Center (NMC) eta model, and Janjic (1979,
1984, 1990, 1994) provides additional numerical analy-
ses of that model.

To standardize the level of accuracy of the numeri-
cal algorithms, however, it would be valuable to define
a set of one-dimensional problems for each modeling
group to perform and to publish as part of one of the
modeling group's future papers. Once such a study is
completed, a firm foundation upon which to base
interpretation of different model results will have been
formed. To simplify the analyses, the comparisons
should be made using cyclic boundary conditions with
a sufficient integer number of grid points to include at
least one wavelength of the dependent variable(s).
The introduction of noncyclic lateral boundary condi-
tions will change the solutions, generally introducing
different wavelengths. This addition would complicate
the analysis of the solution technique. Our assertion
(substantiated by tests) is that the inaccuracies of a
numerical scheme for the idealized situation of cyclic
boundary conditions are likely to be made only worse
when noncyclic lateral boundaries are used.

We propose the following problems to assess the
numerical schemes. Each model would discretize
these equations in the form as applied in their model.
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1) Advection of velocity:

~ 

= -fu
at

au/at = -uau/ax, (1)
with f equal to a constant of order 10-4 S-1, and
U(X, 0) = Uo cos kjtJ.x (uo = 1 can be assumed);

V(X, 0) = o. The exact solution of (4) is u(x, t) =

Re [u(x, O)eift]; v(x, t) = 1m [u(x, O)eift].

5) Diffusion:

with U = constant and u(x, 0) = Uo cos kjLlx (uo = 1
is usually specified) where k = 2n/nLlx, j is the
gridpoint number, Llx is the grid interval, and nLlx is
the wavelength of the imposed wave. The exact
solution is Ue(X, t) = u(x -Ut).

2) Advection of a scalar:
~=K~
dt dX2 (5)

~=-ual/J/axat (2)
with K = constant and cf>(x, 0) = cf>o cos kjAx (cf>o = 1

can be applied) with cf>o a constant. The exact
solution of (5) is cf>e(x, t) = exp(-Kk2t) cos kx.with U= constant and cf>(x, 0) = cf>o cos kjAx(cf>o = 1

is usually applied). The exact solution is cf>e(X' t) =

cf>(x -Ut).
The assumed form of solution described by a

cosine function does not permit the evaluation of
positive definite scalars (i.e., those as kinetic en-
ergy, water vapor mixing ratio, etc.), which must
always be greater than or equal to zero. An ex-
ample of a positive definite scheme is that of
Smolarkiewicz (1983). The evaluation of a solution
technique's ability to preserve positive definite-
ness is an additional evaluation requirement, al-
though we do not represent a specific methodol-
ogy in this paper. For most dependent variables,
one can work with perturbations from a basic state
(e.g., background water vapor mixing ratio, large-
scale kinetic energy) so that the analysis proce-
dure presented here still applies. For quantities
such as air pollution contaminants, which often are
nonzero only locally, positive definiteness is an
additional requirement that must be evaluated.

3) Pressure gradient force:

Any spatial filtering used by a model should be
written in a form equivalent to (5). This includes higher-
order spatial filtering forms [i.e., fourth order; Klemp
and Wilhelmson (1978)]. The filter should then be
evaluated as part of the model analysis.

The procedure applied in Pielke (1984, chapter 10)
could be used to assess the schemes where values of
the change per time step (or per application in the case
of a filter) of the dependent variable would be deter-
mined. For a leapfrog, centered, advection numerical
representation of Eq. (1), for example,

'r+1 'r-1 'r 'r
U. -U. U. 1 -U.

1J J = -U J+ J-

2Llt 2Llx
(6)

iJhau
-=-g.at ax

(3)

with g (the gravitational constant) and H (a height)
constants, and h(x, 0) = ho cos kjAx. A value of ho
= 1 can be assumed without loss of generality;
U(x, 0) = (g/H)\2h(x, 0) (Weidman and Pielke
1983). The exact solution is he(x, t) = h(x -ct),
where c = (gH)Y2.

4) Coriolis term:

This scheme is analyzed in Pielke (1984, p. 280). It
exactly preserves amplitude, while phase speed er-
rors are presented as a function of resolved wave-
length with features less than about 4Axpoorly repre-
sented in terms of propagation speed.

We suggest for the system of Eqs. (1 )-(5) used in
a specific atmospheric modeling system, tables of the
ratio of the change of the exact solution per time step
(i.e., Ae) versus the change resulting from the analytic
solution to the linear discrete equation (i.e., Aa) should
be presented. In addition, tables of the ratio of the
exact phase speed Ce (if it is not zero) versus the
analytic phase speed Ca would be useful.

For the set of Eqs. (1 )-(5) the exact solutions
correspond to (1) Ae = 1, ce = U; (2) Ae = 1, ce = U; (3)
Ae = 1, ce = (gH)l;; (4) Ae = 1, ce = 0; and (5) Ae = exp
(-Kk2t), ce = O.

Values of the ratios of amplitudes and phase speeds
could then be plotted for a range of wavelengths (i.e.,
2Ax, 4Ax, 6Ax, 8Ax, 10Ax, 20Ax) and nondimensional
time step ratios [i.e., the Courant number UAt/Axfor
(1) and (2); the gravity wave Courant number (gH)I;At/Ax

au
at

=fv

(4)
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for (3); the value of .1.tffor {4); and the Fourier number
K.1.t(L\x)-2 for (5)].

The availability of this information will assist read-
ers in determining the quantitative fidelity of numerical
algorithms used in a model with respect to their
evaluation of individual terms. Modelers could also
extend this analysis to show how (and if) grid stagger-
ing and multidimensions improve the accuracy of their
chosen schemes. At the current time, little information
is generally available to readers of the literature that
allows an evaluation of the strengths and weaknesses
of the various models.

Pielke and Arritt (1984) point out how our commu-
nity could also benefit from the standardization of code
implementations of the various schemes and
parameterizations that are widely referenced and used
in current models. In particular, the interchangeability
of code implementations would have each numerical
scheme "engine" already written in standard format,
following, ideally, the guidelines of Kalnay et al. (1989)
to assist in validation and comparison.

It would further be helpful if at FTP (file transfer
protocol) sites authors could make available valida-
tions and/or name list examples of a "do it yourself" run
plus standardized "boiled-down" one-dimensional ver-
sions that would show clearly what each adopted
scheme does. Literature should contain all necessary
details (e.g., equations, grids, boundary conditions,
filters, coefficient ranges, etc.) to understand the model,
plus indicate the FTP site where the code implemen-
tation of the analytic version is available. As network-

ing technology improves, the community should also
encourage standardized indexed documentation [e.g.,
in HyperText Markup Language, used on National
Center for Supercomputing Applications (NCSA 1995)
Mosaic pages].
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